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Highlights  Abstract  

▪ Multiscale 2-D convolutional neural networks 

with different sizes are proposed. 

▪ The CWT analysis of vibration signals and deep 

learning methods are combined. 

▪ An improved channel attention mechanism is 

developed. 

▪ The model can be applied to single and advanced 

fault-diagnosing eventualities. 

▪ The algorithm reduces the dependence on prior 

knowledge and manual labor. 

 

 Accurate fault diagnosis is critical to operating rotating machinery safely 

and efficiently. Traditional fault information description methods rely on 

experts to extract statistical features, which inevitably leads to the 

problem of information loss. As a result, this paper proposes an 

intelligent fault diagnosis of rolling bearings based on a continuous 

wavelet transform(CWT)-multiscale feature fusion and an improved 

channel attention mechanism. Different from traditional CNNs, CWT 

can convert the 1-D signals into 2-D images, and extract the wavelet 

power spectrum, which is conducive to model recognition. In this case, 

the multiscale feature fusion was implemented by the parallel 2-D 

convolutional neural networks to accomplish deeper feature fusion. 

Meanwhile, the channel attention mechanism is improved by converting 

from compressed to extended ways in the excitation block to better 

obtain the evaluation score of the channel. The proposed model has been 

validated using two bearing datasets, and the results show that it has 

excellent accuracy compared to existing methods. 
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1. Introduction 

Bearings play the most critical role in mechanical systems, with 

applications in aerospace, wind power generation, rail transit, 

automobiles, ships, and engineering machinery. When a serious 

failure occurs, it can result in equipment downtime or even 

casualties of various degrees. Rolling bearings are responsible 

for almost 60% of transmission system failures, according to 

insufficient figures [8]. As a result, intelligent diagnostic 

algorithms for detecting problems and precisely identifying 

them should be developed as soon as possible to reduce the 

economic loss caused by equipment failure. 

Since the 21st century, with the development of computer 

and sensing technologies, a large amount of data has been 

collected and stored, and fault diagnosis techniques based on 

data-driven algorithms have developed rapidly [19, 36]. 

Recently, an increasing number of scholars have focused on the 

field and obtained refreshing results. Ravikumar et al. [23] 

proposed a fault diagnosis algorithm for internal combustion 

engines combined with discrete wavelet transform (DWT) and 

decision tree algorithms. Dhiman et al. [5] used twin support 

vector machines (TWSVMs) for fault diagnosis for wind 

turbines. Peng et al. [21] developed a 1-D convolutional neural 

network (CNN) for fault diagnosis, in which the 1-D signals of 

bearings are preprocessed into low-frequency branches, constant 

mapping branches, and denoising branches, and then these 

branches are fed into the CNN for fault diagnosis, which can 

effectively detect the faults of high-speed train bearings in a 
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high-noise environment. Peng et al. [22] gave a raw vibration 

signal analysis algorithm based on the improved Hilbert-Huang 

transform (IHHT), and the experiment has proven that IHHT 

does show the rubbing symptoms more clearly and accurately. 

Although artificial intelligence algorithms based on data-driven 

methods in the literature have achieved excellent performance in 

fault diagnosis, we found that the manually extracted features 

can only be applied to a single working condition, which is not 

completely free from the limits of linearity and smoothness and 

has poor self-adaptability. 

Deep neural networks (DNNs) and encoders with fully 

connected layers offer a promising answer to the matter. DNN 

and encoders specialize in extracting more representative 

features from the vibration signal, which implies that feature 

extraction depends on less prior knowledge and skilled expertise. 

Many scholars have implemented fault diagnosis using encoders 

and DNNs. Wu et al. [11] proposed hybrid classification 

encoders based on a softmax classifier to diagnose rotating 

machinery health conditions directly. Chen et al. [4] developed 

a one-dimensional self-encoder for noise reduction of high-

dimensional signals while learning stratified features for fault 

detection and diagnosis in variable processes. Wang et al. [26]. 

used a DNN model for the fault diagnosis of machines, and two 

datasets were adopted to verify the effectiveness. Yu et al. [33] 

presented a deep belief network was given that combined 

confidence and a softmax classifier into a DNN model. Zhang et 

al. [37] applied a DNN model that directly recognizes raw data 

without signal processing. However, in both encoder and DNN 

models, the shallower layer neurons are fully connected to the 

deeper layer neurons, and the possibility of gradient explosion 

increases as the number of layers increases. Unlike standard 

fully connected deep neural networks and encoders, deep 

convolutional neural networks consist of multiple 

convolutional-pooling layers with superior performance of 

sparse connectivity, shared weights, and translation invariance. 

Scholars at home and abroad have conducted many studies on 

the application of CNNs. Li et al. [15] developed a fault 

diagnosis model based on CNN and raw infrared images. The 

raw infrared images of rotating machinery are acquired, and then 

the image is fed into the CNN for feature extraction and 

recognition. Zhang et al.[34] used a diagnosis model based on 

CNN, which can automatically perform feature extraction and 

diagnostic decisions. Moreover, Huang et al. [9] developed an 

improved CNN model to diagnose bearing faults with multiscale 

information. However, it is still necessary to extract the 

statistical features of the vibration signal as the input of the CNN, 

the joint distribution information in the time and frequency 

domains is not considered, resulting in a weak mapping 

relationship between the signal representation and the 

mechanical health state. 

To solve the above problems, this manuscript proposes an 

intelligent fault diagnosis of rolling bearings based on  

a continuous wavelet transform - multiscale feature fusion and 

improved channel attention mechanism (CWT-CAMCNN). The 

raw data acquired by acceleration sensors are fed into the CWT-

CAMCNN model to perceive the fault state of the bearing. The 

hyper-parameters are effectively tuned using the Adam 

optimizer to obtain an ideal model based on the CWT-

CAMCNN algorithm. The main contributions of this study are 

listed below. 

(1) Compared with the classical convolutional neural network, 

the CWT-CAMCNN model proposed in this manuscript 

introduces an improved channel attention mechanism 

within the convolutional neural networks and establishes 

the correlation between channels. 

(2) Converts 1-D signals into 2-D features by utilizing  

a continuous wavelet transform layer that highlights fault 

characteristics, allowing for faster training and less 

proneness to overfitting. 

(3) The algorithm reduces the dependence on prior knowledge 

and manual labor, has strong adaptability and 

generalization ability, and is easy to apply to different 

industrial equipment. 

(4) This methodology will be applied to single fault 

diagnosing eventualities and performs well in advanced 

fault diagnosing eventualities. Two experimental cases 

demonstrate its superiority. 

The remainder of the manuscript is organized as follows. In 

Section 2, the basic theories of the continuous wavelet transform 

(CWT), improved channel attention mechanism (CAM), and 

multiscale CNNs are briefly introduced. In Section 3, the 

diagnostic cases of the bearing dataset are investigated using the 

proposed algorithm. Finally, Section 4 gives the conclusion of 

the manuscript. 

2. Theoretical background 

This manuscript proposes an intelligent fault diagnosis of rolling 

bearings based on a continuous wavelet transform-multiscale 

feature fusion and an improved channel attention mechanism 

(CWT-CAMCNN). The proposed fault diagnosis algorithm has 

the excellent capability of adaptive extraction of deep-seated 

features, without the need for manual feature extraction to 

represent the state features, and can directly extract the deep-

seated features from transformed 2-D images. Fig. 1 shows the 

procedures of the proposed CNN-based diagnosis algorithm of 

bearings. The proposed diagnosis algorithm mainly consists of 

three steps. 

Step 1. The raw vibration data are acquired by vibration 

sensors and data acquisition instruments, and then the raw 

vibration data are divided into the training set, validation set, and 

testing set. In addition, data are preprocessed and status data 

labels are specified. 

Step 2. The data of the training set are fed into the CWT-

CAMCNN model for training, and the data of the validation set 

are used to optimize the hyper-parameters to meet the accuracy 

requirements. 

Step 3. The preprocessed data of the testing set are fed into 

the CWT-CAMCNN model, and the diagnostic findings are 

output. 
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Fig. 1. The procedures of the proposed diagnosis algorithm for bearings. 

 

 
Fig. 2. The general fault diagnosis procedure of the proposed algorithm. 

Fig. 2 shows the general fault diagnosis procedure of the 

proposed algorithm. The proposed fault diagnosis algorithm 

contains five essential parts: the CWT layer, convolution-

pooling layers, improved CAM layers, fully connected layer, 

and softmax layer. Different from traditional CNNs, the raw data 

are fed into the CWT layer for time-frequency conversion, 

aiming to obtain wavelet power spectrum by combining the time 

domain and frequency domain, better highlighting the mapping 

relationship between signal representation and mechanical 

health state. Then, the time-frequency spectra are convolved by 

the multiscale convolution-pooling layers for feature extraction, 

and the multiscale feature fusion was implemented by the 

developed parallel convolutional neural networks. Meanwhile, 

the channel attention mechanism is improved by converting 

from compressed to extended ways in the excitation block to 

better obtain the evaluation score of the channel. In addition, the 

improved channel attention mechanism layer adaptively 

enhances or suppresses different channels to redistribute the 

weights for different fault levels. Fully connected layers are used 

for the nonlinear fitting of feature maps. Finally, the softmax 

layer generates the probabilities of different conditions. Model 

validation was conducted on the bearing datasets, and the model 

hyper-parameters and training parameters were kept consistent 

except for the difference in data length between the datasets. 

2.1 Continuous Wavelet Transform (CWT) 

CNNs specialize in handling 2-D or higher-dimensional data. In 

contrast, CNNs do not have ideal diagnostic performance for 1-

D information [10]. Therefore, converting 1-D raw data into 2-

D information forms is necessary. In the field of signal 

processing, many data preprocessing techniques have been 

developed for the time-frequency analysis of the raw signal, 

including short-time Fourier transform (STFT), wavelet 

synchro-squeezed transform (WSST), fast Fourier transform 

(FFT), HHT, and so on [2,21]. For nonstable signals, CWT is an 

expert at adaptively extracting the deep-level features adaptively 

that can be mapped from 1-D space to 2-D space to represent 

time-frequency features [7]. In addition, the Morlet function, as 

a standard wavelet function, has nonorthogonality. More 

importantly, the Morlet function is well-balanced between time-

domain and frequency-domain analysis [2]. Therefore, the 

complex Morlet wavelet (cmor3-3) [7,31,24] is chosen as the 

wavelet generating function. 

The CWT of the 1-D vibration signal sequence can be 

expressed as: 

𝐶𝑊𝑇(𝑠, 𝑡) =
1

√𝑠
∫  
∞

−∞
𝑥(𝑡)𝜓

𝑡−𝜏

𝑠
d𝑡 𝑠, 𝜏 ∈ 𝑅, 𝑠 > 0  (1) 

where 𝑆 is the scale parameter. When 𝑠 > 1, it realizes the 

stretching of the 𝜓(𝑡) , which is beneficial to extract the low-

frequency features. In a similar way, when 0 < 𝑠 < 1, it realizes 

the compression of the 𝜓(𝑡), which is beneficial to extract the 

high-frequency features. 𝜏 is the translation parameter, which is 

used to specify the position of wavelet function translation along 

the time axis. 

The CWT reflects the similarity between the mother wavelet 

and the signal through the inner product operation, and the 

mother wavelet should be chosen to be as similar as possible to 

the characteristics of the fault pulse, while being able to portray 

the fast oscillation characteristics of the signal. The selection of 

the mother wavelet function can be referred to in the literature 

[10], In this paper, the complex Morlet wavelet is used as the 

mother wavelet function, and its expression is. 

𝜓(𝑡) = 𝜋−1/4𝑒−𝑡
2/2cos (𝑤0𝑡)  (2) 

where 𝒘0 is the center frequency of the wavelet. 

Fig. 3 shows the CWT time-frequency maps under different 

health conditions. Take the drive end bearing for the mixed 
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working condition in the CWRU bearing dataset as an example, 

as shown in Table 6. As can be seen in Fig. 3, the CWT time-

frequency maps for different working conditions have some 

similarities, it is difficult to visually observe the variations 

between these maps, and it is impractical to employ the 

information to identify faults. Hence, developing an intelligent 

algorithm to extract valuable features and identify fault types is 

critical and important.

 
Fig. 3. The CWT maps of the raw data under different health conditions. C1: NO. C2: 0.007 IF. C3: 0.007 BF. C4: 0.007 OF1. C5: 

0.007 OF2. C6: 0.007 OF3. C7: 0.014 IF. C8: 0.014 BF. C12: 0.021 IF. C13: 0.021 BF. C14: 0.021 OF1. C15: 0.021 OF2. C16: 0.021 

OF3. C17: 0.028 IF. C18: 0.028 BF. 

 

 
Fig. 4. The improved attention unit 

 

2.2 Improved Channel Attention Mechanism 

Attentional mechanisms play a critical role in human perception. 

When humans observe the environment, the visual system does 

not immediately process the whole scene but selectively 

acquires information. In the field of fault diagnosis, the CAM 

does precisely that the fault sensitivity of each channel is learned 

by modeling, and then the weight of different channels is 

adjusted to enhance or suppress. Finally, the adjusted weight is 

applied to the original channels to improve the performance of 

the model. The channel attention mechanism proposed in this 

manuscript is based on an improved version of the channel 

attention mechanism in the literature [14], where the network 

structure of the excitation block is converted from a compressed 

pattern to an extended pattern to better obtain the evaluation 

scores of the channels. The improved attention unit includes the 

squeeze and excitation blocks [16]. Fig. 4 shows the structure of 

the improved attention unit, which can be implemented in the 

following three steps. Table 1 shows the detailed parameters of 

the improved attention unit. 

Step 1: After the multiscale convolution-pooling layer 

network operation, the size of the output feature map is  𝑋 =
[𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑖], 𝑊 ×𝐻 are the width and length each feature 

map respectively, 𝐶 is the number of channels. Global average 

pooling (GAP) is applied to each channel to provide global 

information to the features after squeezing, it can be expressed 

as follows. 

𝑍c = 𝐹sq(𝑋c) =
1

𝐻×𝑊
∑  𝐻
𝑖=1 ∑  𝑊

𝑗=1 𝑋c(𝑖, 𝑗) ⋅ (3) 

where 𝑍c  represents the compression value of the cth channel 

feature map. 𝑋𝑐(𝑖, 𝑗)represents the eigenvalue of the cth channel 

at the position of 𝑖 and 𝑗. 

Step 2: After the GAP operation, the size of the feature map 

is 𝐶 × 1 × 1, and then the feature map is fed into the excitation 

block, which contains three cascaded layers including two 

convolutional layers (conv1, conv2), and one sigmoid layer. The 

conv1 layer uses ReLU, and the compression ratio r = 4 is used 

to reduce the number of channels. In this case, the size of the 

output feature map was 1 × 1 × 𝐶/𝑟. This can be conducted as 

follows. 

{
𝑆e1 = 𝐴relu (𝑤1 × 𝑧 + 𝑏1)

𝐴relu (𝑥) = 𝑚𝑎𝑥(𝑥, 0)
   (4) 

where 𝑍 is the size of the feature map after the GAP operation. 

𝑤1 and 𝑏1 are the weights and bias of the conv1, respectively. 

𝐴relu (⋅) is the activation function. 

The conv2 layer can recover the number of compressed 

channels and can adjust the weights of each channel while 

mapping the values to 0~1 by the sigmoid function. This process 

is expressed as follows. 
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{
𝑠 = 𝐴sigmoid (𝑤2 × 𝑠e1 + 𝑏2)

𝐴sigmoid (𝑥) =
1

1+𝑒−𝑥

  (5) 

where 𝓌2 and 𝑏2 are the weights and bias of the conv2 layer, 

respectively. 𝐴sigmoid (⋅) is the sigmoid activation function. 

Step 3: Multiplying the weights obtained from Step 2 with 

the original feature map, the process is expressed as follows. 

 𝐹scale (𝑋, 𝑠) = [𝑠1 × 𝑋1,𝑠2 × 𝑋2,, ⋯ , 𝑠𝑖 × 𝑋𝑖] (6) 

Table 1 Detailed parameters of the improved attention unit 
Improved attention unit 

Layer Input size Output size 

GAP H×W×C 1×1×C 

Conv1 1×1×C/r 1×1×C 

Conv2 1×1×C 1×1×C/r 

Sigmoid 1×1×C/r 1×1×C/r 

Reshape 1×1×C H×W×C 

Scale H×W×C H×W×C 

2.3 Multi-scale Convolutional Neural Network  

CNNs are an essential branch of deep convolutional neural 

networks [6]. Based on the excellent performance of the sparse 

connectivity mechanism, shared weights mechanism, and 

translation invariance mechanism [28], CNNs have achieved 

outstanding success in both academic research and industry 

fields. At present, 1-D CNNs are widely applied in most studies. 

The classical convolutional neural network is designed for two-

dimensional images and shows excellent ability in image 

classification tasks, however, it cannot be processed for one-

dimensional mechanical signals, so this paper converts one-

dimensional mechanical signals into two-dimensional image 

signals as input to the convolutional neural network through the 

continuous wavelet transform to realize fault identification. In 

this section, we introduce the basic theory of 2-D CNN models. 

2.3.1 Convolution-Pooling Module 

The convolutional layer is primarily applied to the network by 

involving convolutional operations to accomplish feature 

extraction of the input images. A set of learnable kernel 

functions is an essential parameter in the feature extraction stage 

and directly determines the quality of the output features. While 

the kernel size corresponds to the perceptual range, its depth 

determines the number of output channels. The convolution 

operation is performed by multiplying the input image with  

a convolution kernel, adding a bias constant and a sliding 

window of specific step size. Therefore, the convolution process 

can be described as follows. 

{
 
 

 
 
𝑍𝑙+1(𝑖, 𝑗) = [𝑍𝑙 ⊗𝑤𝑙+1](𝑖, 𝑗) + 𝑏 = ∑  

𝐾𝑙

𝐾=1

∑  

𝑓

𝑥=1

∑  

𝑓

𝑦=1

[𝑍𝐾
𝑙 (𝑠0𝑖 + 𝑥, 𝑠0𝑗 + 𝑦)𝑤𝑘

𝑙+1(𝑥, 𝑦)] + 𝑏

(𝑖, 𝑗) ∈ {0,1,⋯ , 𝐿𝑙+1}𝐿𝑙+1 =
𝐿𝑙 + 2𝑝 − 𝑓

𝑠0
+ 1                                              (7)

 

where 𝑍𝑙   and 𝑍𝑙+1  are the input and output of the 𝑙 + 1  layer, 

respectively. 𝑏 is the bias. 𝑍(𝑖, 𝑗) is the image element value. 𝐾 

is the number of channels. 𝑓 is the size of the convolution kernel. 

𝑆0 is the size of the step. 𝑝 is the number of padding. 𝐿𝑙+1 is the 

output size of 𝑍𝑙+1. 

After the convolution layer, pooling is usually carried out for 

downsampling operations. In pooling operations, the standard 

procedures are average pooling and max-pooling, which average 

or maximize the pixel values of the pooled window. The pooling 

operation is equivalent to reducing the input feature graph so that 

the model can extract a broader range of features. After the 

pooling operation, the length and width of the feature graph are 

reduced. Therefore, the number of parameters and the amount of 

calculation are reduced. Reducing the number of parameters 

prevents the model from overfitting, and the pooling operation 

has a certain robustness to the noise interference. The most 

common pooling layer is max-pooling or average pooling, and 

the max-pooling process is represented as follows. 

{
𝑓𝑒𝑎𝑖,𝑗

𝐿 = 𝑓(𝑓𝑒𝑎𝑖,𝑗
𝐿−1)

𝑖′ = (0,1,2, … , [
𝑖−𝑑

𝑠
])

   (8) 

where 𝑓𝑒𝑎𝑖,𝑗
𝐿−1 denotes the jth feature map of size i of the 𝐿 layer. 

𝑓 denotes the pooling process. 𝑑 denotes the size of the pooling 

function. 𝑆 denotes the move step of the pooling function. 𝑓𝑒𝑎𝑖,𝑗
𝐿  

is the output feature map after the pooling operation. 

2.3.2 Fully Connected Layer 

After passing through multiple convolutional layers and pooling 

layers, the fully connected layer is usually connected to integrate 

the local features extracted from the convolutional layer or 

pooling layer. The full connected layer is a traditional multilayer 

perceptron that connects each neuron in the lower layer to each 

neuron in the upper layer. The primary role of the fully 

connected layer is to extract features further and connect the 

output with the softmax classifier. The fully connected layer 

usually consists of two to three hidden layers. To improve the 

performance of CNN models, the activation function of neurons 

in the fully connected layer typically employs the ReLU 

function, and all neurons in the hidden layer are interconnected 

according to the following definition. 

𝑧𝑗
𝐿 = ReLU (∑  𝑀

𝑖=1 𝑥𝑖
𝐿−1𝑤𝑗,𝑖

𝐿 + 𝑏𝑗
𝐿), 𝑗 = 1,2, … , 𝑁  (9) 

where 𝑤𝑗,𝑖
𝐿  is the connection weight from the ith neuron of the 

𝐿 − 1  layer to the j-th neuron of the 𝐿  layer. 𝑥𝑖
𝐿−1  denotes the 

input of the i-th neuron of the 𝐿 layer. 𝑏𝑗
𝐿 is the bias of the i-th 

neuron of the 𝐿 layer. 𝑀 and 𝑁 are the number of neurons of the 

𝐿 − 1 and 𝐿 layer, respectively.  

2.3.3 Zero-Padding Method  

When applying multilayer convolution, we always miss the edge 

information. To address this matter, we proposed a zero-padding 

method. The padding method means that the zero elements were 

padded on both sides of the input height and width, and used for 

CNN models to prevent the loss of feature dimensionality. 𝑄 

represents the input dimension. 𝑂  represents the output 

dimension. 𝐹  represents the convolutional kernel size. 𝑆 

represents the step size, and the left padding 𝐿 and right padding 

𝑅 can be expressed as  

{
 
 

 
 𝑂 = ceil (

𝑄

𝑆
)

𝑇 = (𝑂 − 1) × 𝑆 + 𝐹 − 𝑄

𝐿 =  floor (
𝑇

2
)

𝑅 = 𝑇 − 𝐿

  (10) 

where ceil (⋅)  and floor (⋅)  are the ceil and floor functions, 

respectively. 

To demonstrate the proposed model structure more clearly, 

Table 2 shows the network details and main parameters. 
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Table 2 Network details and main parameters 
Layers Output size Channel Filter Stride Padding 

Conv2d_1 (None,32,115,335) (1,32) (3,3) (2,2) (32,32) 

Attention unit_1 (None,32,115,335) 128 / / / 

Conv2d_2 (None,64,52,107) (32,64) (2,2) (2,2) (48,48) 

Conv2d_3 (None,32,13,26) (64,32) (2,2) (2,2) (0,0) 

Conv2d_4 (None,16,38,45) (32,16) (2,2) (2,2) (32,32) 

Conv2d_5 (None,6,38,45) (32,16) (2,2) (2,2) (32,32) 

Conv2d_6 (None,16,38,45) (32,16) (2,2) (2,2) (32,32) 

Concatenatio_1 

(Conv2d_4_5_6) 
(None,48,38,45) 48 / / / 

Conv2d_7 (None,16,12,15) (48,16) (3,3) (3,3) (0,0) 

Conv2d_8 (None,16,12,15) (48,16) (3,3) (3,3) (0,0) 

Avg_pooling (None,32,6,7) / (2,2) (2,2) (0,0) 

Attention unit_2 (None,32,6,7) 128 / / / 

Fully connected 

layer 
(None,512) 512 / / / 

3. Experimental 

In this section, the effect of the proposed fault diagnosis 

algorithm is discussed based on the experiment, and the 

proposed algorithm is tested on two datasets, including the 

CWRU bearing data and experimental bearing data. The CWT-

CAMCNN models are written in PyTorch and run on a computer 

with an i7-10700 CPU, RAM 16.00 GB, and GTX1660 Ti GPU. 

The operating system is 64-bit Win10. During CWT-CAMCNN 

training, the learning rate is 0.001, the batch size is 16, the epoch 

is 60, and the Adam optimizer is selected for optimization. 

3.1 Case study 1: On the CWRU bearing datasets 

3.1.1 Datasets description 

All the data in the CWRU datasets are collected on the bearing 

testbed, which is shown in Fig. 5. The testbed primarily consists 

of a motor, a fan end bearing, a drive end bearing, a coupling, 

and a dynamometer. The testbed collects raw vibration signals 

from the fan end bearing (FE) and the drive end bearing (DE). 

The single-point fault of the bearing has four fault diameters: 

0.18, 0.36, 0.54, and 0.71 mm. The testbed includes four fault 

forms: normal (NO), inner race faults (IF), ball faults (BF), and 

outer race faults (OF). The outer race failures are divided into 

three forms of failure according to the location of the 

failure(OF1/OF2/OF3). Two acceleration sensors were placed to 

collect the vibration signals of the two bearings with a sampling 

frequency of 12 kHz. For the DE fault, the sampling frequency 

is 48 kHz, and speed and horsepower data are collected using  

a torque transducer, which contains four working conditions: 0 - 

1797, 0.75 - 1772, 1.5 - 1750, and 2.25 - 1730 (kW - rpm). 

Therefore, the frequency is approximately 30 Hz, so the time 

series length at one rotation cycle is 400. In the case of 

nonoverlapping samples, the fault signal sequence is segmented, 

75% of which is used for training, and the remaining sample is 

used for testing the network. 

 
Fig. 5. Test rig used in the CWRU lab 

3.1.2 Single bearing fault diagnosis 

Tables 3 and 4 show the test accuracy of DE and FE at different 

fault sizes and working conditions, respectively. Table 3 shows 

that the fault sizes are 0.18, 0.36, 0.54, and 0.71 mm, and the 

working conditions are 0 - 1797, 0.75 - 1772, 1.5 - 1750, and 

2.25 - 1730 (kW - rpm), respectively. The test accuracy for single 

working conditions can be 100%, except for a miscalculation at 

1.5 kW - 1750 rpm and a fault size of 0.54 mm. As seen in Table 

4, except for the working conditions with fault sizes of 0.18 and 

0.36 mm, misjudgment occurred, but the accuracy exceeded 

98%. In summary, the proposed diagnostic algorithm has higher 

diagnostic accuracy in all cases. 

Table 3 Accuracy on the single DE  

Fault size 

(mm) 

Working 

condition 

(kW - rpm) 

NO 
12 k DE faults 

Average 

accuracy 

IF BF OF1 OF2 OF3  

0.18 

0 - 1797 1 1 1 1 1 1 1 

0.75 - 1772 1 1 1 1 1 1 1 

1.5 - 1750 1 1 1 1 1 1 1 

2.25 - 1730 1 1 1 1 1 1 1 

0.36 

0 - 1797 1 1 1 1 / / 1 

0.75 - 1772 1 1 1 1 / / 1 

1.5 - 1750 1 1 1 1 / / 1 

2.25 - 1730 1 1 1 1 / / 1 

0.54 

0 - 1797 1 1 1 1 1 1 1 

0.75 - 1772 1 1 1 1 1 1 1 

1.5 - 1750 1 1 1 0.986 1 1 0.998 

2.25 - 1730 1 1 1 1 1 1 1 

0.71 

0 - 1797 1 1 1 / / / 1 

0.75 - 1772 1 1 1 / / / 1 

1.5 - 1750 1 1 1 / / / 1 

2.25 - 1730 1 1  / / / 1 

Table 4 Accuracy on the  single FE  

Fault 

size 

(mm) 

Working 

condition 

(kW - rpm) 

N

NO 

12 k DE faults 
Average 

accuracy 

IF BF OF1 OF2 OF3  

0.18 

0 - 1797 1 1 1 1 0.989 1 0.998 

0.75 - 1772 1 1 1 1 0.961 1 0.993 

1.5 - 1750 1 1 1 0.985 0.972 0.936 0.982 

2.25 - 1730 1 1 1 1 0.973 0.986 0.993 

0.36 

0 - 1797 1 1 1 / 1 / 1 

0.75 - 1772 1 0.988 1 / 0.988 / 0.994 

1.5 - 1750 1 1 1 / 1 / 1 

2.25 - 1730 1 1 1 / 1 / 1 

0.54 

0 - 1797  1 1 1 / 1 / 1 

0.75 - 1772  1 1 1 / 1 / 1 

1.5 - 1750  1 1 1 / 1 / 1 

2.25 - 1730  1 1 1 / 1 / 1 
 

T-SNE is an unsupervised, nonlinear learning dimension 

reduction algorithm and visualization for representing high-

dimensional datasets in low-dimensional space. The feature 

distributions of the learning results of different layers are 
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visualized as probability distributions with t-SNE. In this 

manuscript, we employ t-SNE to visually interpret how the 

model makes decisions for fault diagnosis.  

The acquired vibration signals are segmented and fed into 

the diagnostic model. To prove the effectiveness of the proposed 

algorithm, take the FE bearing(Table 4) as an example. Fig. 6 

shows the diagnostic decision process of the proposed algorithm 

for six bearing health states under the working condition of 0 

kW - 1797 rpm for NO, IF, BF, and OF with fault sizes of 0.18 

mm. It can be seen that the raw data can be analyzed after CWT 

transformation, and the IF, BF, and OF (OF1/OF2) of the 

bearings can be grouped through the conv_1 and attention unit_1 

layers only and have distinct boundaries. However, at this stage, 

there is an apparent feature overlap between the NO and OF3. 

After multilayer convolution for feature extraction and merging 

(concatenate_1 and concatenate_2), the overlapping features of 

the OF3 and NO of the bearing are starting to become grouped 

together. After attention unit_2 and the fully connected layer 

(FC), the OF3 and NO features are grouped, and the features of 

each health state form a cluster with some distance. Therefore, 

the proposed fault diagnosis algorithm CWT-CAMCNN can 

diagnose faults using CWT time-frequency images of raw 

signals. 

 
Fig. 6. Feature representations of the model via t-SNE. (a) 

Conv_1, (b) Attention unit_1, (c) Concatenate_1, (d) 

Concatenate_2, (e) Attention unit_2, (f) FC layer 

 

 

 

3.1.3 Mixed Bearing Fault Diagnosis 

Table 5 Accuracy under mixed fault sizes on the DE 

Fault 
size 

(mm) 

Types Label 

Working condition (kW - rpm) 

0 - 1797 0.75 - 1772 1.5 - 1750 2.25 -1730 

NO  0 1 1 1 1 

0.18 

IF1 1 1 1 1 1 

BF1 2 1 1 1 1 

OF1 3 1 1 1 1 

OF2 4 1 1 1 1 

OF3 5 1 1 1 1 

0.36 

IF2 6 1 1 1 1 

BF2 7 1 1 1 1 

OF4 8 1 1 1 1 

IF3 9 1 1 1 1 

BF3 10 1 1 1 1 

0.54 

 
 

0.71 

OF5 11 1 1 1 0.988 

OF6 12 1 1 1 1 

OF7 13 0.985 1 1 0.988 

IF4 14 1 1 1 1 

BF4 15 1 1 1 1 

Average   0.999 1 1 0.999 

 

Table 6 Accuracy under mixed working conditions on the DE 

Working condition 
(kW - rpm) 

Condition 
Types Label 

Fault size (mm) 

number 0.18 0.36 0.54 0.71 

NO C1  0 1 1 1 1 

0 - 1797 

C2 IF 1 1 1 1 1 

C3 BF 2 1 1 0.972 0.975 

C4 OF1 3 1 / 0.955 / 

C5 OF2 4 0.972 / 0.931 / 

C6 OF3 5 1 1 0.944 / 

0.75 - 1772 

C7 IF 6 1 1 1 1 

C8 BF 7 0.987 0.986 1 0.971 

C9 OF4 8 0.975 1 0.915 / 

C10 OF5 9 1 / 1 / 

C11 OF6 10 0.754 / 0.953 / 

1.5 - 1750 

C12 IF 11 1 1 1 1 

C13 BF 12 1 0.986 1 0.970 

C14 OF7 13 0.968 1 0.931 / 

C15 OF8 14 1 / 0.938 / 

C16 OF9 15 0.977 / 0.960 / 

2.25 - 1730 

C17 IF 16 1 1 1 1 

C18 BF 17 1 1 1 0.909 

C19 OF10 18 1 1 1 / 

C20 OF11 19 1 / 1 / 

C21 OF12 20 1 / 1 / 

Average    0.983 0.998 0.976 0.981 
 

To further verify the effectiveness of the proposed algorithm 

on the multi-classification task, the algorithm is applied to fault 

diagnosis under mixed working conditions. As shown in Tables 

5 and 6, there are 16 and 21 bearing failures corresponding to 

the four types of failures, respectively. As seen in table 5, the test 

accuracy can meet 100% for the two working conditions of 0.75 

kW - 1772 rpm and 1.5 kW - 1750 rpm and 99.9% for the other 

two working conditions of 0 kW - 1797 rpm and 2.25 kW - 1730 

rpm, the miscalculation occurs mainly in the identification of 

faults in outer race faults (OF5/OF7). As seen in Table 6, the test 

accuracy can meet more than 97% in the four mixed conditions, 

among which the test accuracy of the mixed condition with  

a fault size of 0.36 mm is as high as 99.8%. The test accuracy of 
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Fig. 8. The accuracy and loss curves of the proposed algorithm 

 

the mixed conditions with fault sizes of 0.18 and 0.71 mm can 

meet more than 98%. The misjudgment also occurs mainly in 

the identification of the OF, indicating that the proposed method 

has a certain missing ability in the identification of defects in the 

case of similar fault form and fault location, but the average fault 

identification accuracy is still higher than 98%. Therefore, it can 

be shown that the proposed method in this manuscript still has 

higher diagnostic accuracy for mixed conditions of rolling 

bearings. 

 
Fig. 7. Output data visualization of mixed fault size. a: 0 kW - 

1797 rpm, b: 0.75 kW - 1772 rpm, c: 1.5 kW - 1750 rpm, d: 

2.25 kW - 1730 rpm. 

To show the classification effect of the proposed algorithm 

more intuitively, t-SNE is employed to visualize the output of 

the fully connected layer. Taking DE-bearing test accuracy for 

mixed fault sizes as an example(table 5), the visualization of the 

low-dimensional feature subset obtained after dimensionality 

reduction is shown in Fig.7. It can be seen from Fig. 7, the 

features under each healthy working condition form a family, 

and each family possesses obvious boundaries without feature 

overlap. There is a certain distance between each family. 

Therefore, the CWT-CAMCNN model proposed in this 

manuscript can be used for fault diagnosis by using the CWT 

time-frequency maps of vibration signals. 

Take DE bearing for mixed working conditions (table 6) as 

an example, the accuracy and loss curves of the training set and 

validation were produced, as shown in Fig. 8. During training 

and validation, the accuracy and loss of each epoch are recorded, 

where five epochs are used as plot points. It can be seen that the 

accuracy rate fluctuates steadily after 50 epochs, and there is no 

obvious inflection point in the curve. In addition, to more 

intuitively show the superiority of the proposed in the training 

and validation process, the maximum accuracy and minimum 

loss values are marked in the unit of batch size. From the 

accuracy curves, we can see that the proposed model can realize 

over 80% diagnostic accuracy after 20 training steps, which 

indicates that the model has high fitting ability.
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3.1.4 Comparison with Existing DL Algorithms 

To further intuitively explain the advantages of the proposed 

CWT-CAMCNN, other popular existing supervised and 

unsupervised deep learning (DL) approaches are carried out for 

comparison on the CWRU bearing dataset, the experimental 

results of different algorithms are listed in Table 7. 

Table 7 Diagnosis accuracies(%) of various methods on the 

CWRU bearings dataset 

 

Reference 
Feature 

extraction 

Bearing fault 

types 

Type 

number 
Accuracy% 

Proposed algorithm 
CWT and 

CAMCNN 

1NO/4IF/4

BF/7OF 
16 99.95 

Proposed method without 

CWT 

Proposed method without 

CAM 

Li et al.(2020) [30] 

CAMCNN 

CWTCNN 

SAE and DBN 

1NO/4IF/4

BF/7OF 

1NO/4IF/4

BF/7OF 

1NO/4IF/4

BF/7OF 

16 

16 

16 

99.84 

99.74 

99.69 

Wang et al. (2019) [14] SWWF 
1NO/1IF/1

BF/1OF 
4 99.57 

Bai et al. (2021) [26] 
MCNN and 

MSCF 

1NO/3IF/3

BF/3OF 
10 99.03 

Xiong et al. (2016) [1] 
MFDFA and 

ASD 

1NO/2IF/2

BF/2OF 
7 98.6 

Liu et al. (2018) [31] 
10 Statistical 

Features 

1NO/3IF/3

BF/3OF 
10 98.4 

Zhu et al. (2019) [18] ICN 
1NO/1IF/1

BF/1OF 
4 97.15 

Ying et al. (2018) [38] EHCT 
1NO/4IF/3

BF/3OF 
11 96.97 

Li et al. (2016) [33] MDA 
1NO/4IF/3

BF/3OF 
11 96.59 

Zhang et al. (2021) [13] GRU 
1NO/3IF/3

BF/3OF 
10 94.22 

Zhang et al. (2021) [13] SVM 
1NO/3IF/3

BF/3OF 
10 81.72 

 

It can be seen that the proposed method has the highest 

diagnostic accuracy on the task of 16 classification. 

Nevertheless, the accuracy of the proposed algorithm on the 

CWRU-bearing dataset can reach 99.95%. Specifically, CWT-

CAMCNN outperforms Li [18], Wang [27], Bai [29], and Xiong 

[14] with improvements of 0.26%, 0.38%, 0.92%, and 1.35%, 

respectively, on the CWRU bearing dataset. The effect of 

network structure on diagnostic accuracy is also tested, and the 

results show that when the proposed method uses only raw data 

as input, the test diagnostic accuracy can still meet 99.84%, and 

when the CAM module is excluded, the test diagnostic accuracy 

is 99.74%, which are higher than that of the existing deep 

learning methods. Therefore, the proposed algorithm can 

achieve better performance. Moreover, the experimental results 

also show the superiority of the deep learning-based fault 

diagnosis algorithm over the shallow deep learning methods of 

GRU and SVM algorithms. 

3.2 Case study 2: On The Experiment Bearing Datasets 

3.2.1 Datasets Description 

Fig. 9 shows the laboratory bearing test stand, consisting of  

a motor frequency conversion controller, a motor, a coupling,  

a bearing seat, a rotor, and other parts. Fig. 10 shows the eight 

health conditions of the bearings designed in the experiment, 

including one normal condition (NO), three inner ring faults 

(IF1/IF2/IF3), and four outer ring faults (OF1/OF2/OF3/OF4). 

The performance of the model was tested under variable speed 

conditions of 15, 20, 25, and 30 Hz. Table 8 shows the bearing 

fault type.  

 
Fig. 9. The laboratory bearing test stand 

 

 
Fig. 10. Different bearing healthy states 

The sampling frequency is set to 19.2 kHz, and the sampling 

time is 110 s. The acceleration sensor is mounted on the housing 

of the bearing seat. To ensure that all samples of fault points can 

be collected within a rotation cycle, the time series length in  

a rotation cycle is 1280. In the case of nonoverlapping samples, 

the fault signal sequence is divided, 75% of which is used for 

training, and the remaining samples are used for testing the 

model. 

Table 8 Bearing fault type 

Label 

 

Bearing fault type 

Length/mm Width/mm Depth/mm 

NO Healthy Healthy Healthy 

OF1 7 2 1 

OF2 3 2 1 

OF3 1 circular hole with a diameter of 1.5 mm 

OF4 3 2 1 

IF1 3 3 1 

IF2 9 circular holes with a diameter of 2 mm 

IF3 3 2 1 

3.2.2 Experiment results and analysis 

The performance of the model proposed in the manuscript is 

visualized layer by layer by t-SNE, taking the speed of 25 Hz as 

an example.  
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Fig. 11. Feature representations of the model via t-distributed 

stochastic neighbor embedding. (a) Conv_1, (b) Attention 

unit_1, (c) Concatenate_1, (d) Concatenate_2, (e) Attention 

unit_2, (f) FC layer. 

 

Fig. 11 shows the feature representations of the model via t-SNE. 

After the CWT of the raw bearing data, it is not easy to 

distinguish the eight bearing health states through the conv_1 

layer, attention unit_1 layer, and concatenate_1 layer. However, 

when passing through the concatenate_2 layer, NO, IF3 and OF3 

can be correctly distinguished from each other and have obvious 

boundaries, although there are some overlapping features 

between OF2, OF4, IF2, and IF1. After the attention unit_2 layer, 

some overlapping features are distinguished; only IF2 and IF1 

have little overlapping features, but the overlapping features are 

significantly reduced compared to the concatenate_2 layer. After 

passing through the FC layer. The eight bearing health states can 

be correctly distinguished, and there is a clear boundary between 

different samples. Therefore, it can be shown that the fault 

diagnosis of varying health states of laboratory bearings can be 

performed without adjusting the hyper-parameters of the 

algorithm proposed in this manuscript. 

 
Fig. 12. The output data visualization of FC layer 

 
Fig. 13. Confusion matrices of variable speed conditions 

To further demonstrate the performance of the proposed method 

for variable speed conditions, t-SNE and confusion matrices 

were plotted for the conditions of 15, 20, 25, and 30 Hz. Fig. 12 

and Fig.13 show the output data visualization and confusion 

matrices of variable speed conditions. The proposed model in 

the manuscript can correctly distinguish the eight health states 

of the bearings. However, there are some overlapping 

characteristics of IF1, IF2, OF2, and OF3 for the four working 

conditions. Nevertheless, by recording the accuracy of the four 

working conditions, the misdiagnosis rate of the inner ring of the 

bearing is 0.03 and 0.08, 0.08 and 0.06, 0.04 and 0.05, and 0.03 

and 0.03, the misdiagnosis rate of the outer ring of the bearing is 

0.05 below. In addition to the statistics of the average accuracy 

under a single working condition, the accuracy reached 97.75%, 

98.38%, 98.25%, and 97.63%, respectively. The average 

accuracy under the four working conditions is 98.00%, so the 

proposed algorithm CWT-CAMCNN algorithm has higher 

accuracy and excellent generalization ability in bearing fault 

diagnosis, which can provide the basis for the reliability and 

safety of bearings. 
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3.2.3 Comparison with existing algorithms 

Fig. 14 compares the accuracies of different diagnostic 

algorithms under four working conditions. Under four working 

conditions, the proposed algorithm has the best diagnosis result 

among all algorithms. The proposed algorithm consists of  

a CWT module, an improved channel attention mechanism 

module, and a multiscale convolution-pooling module. To 

compare the effectiveness of each module in the model, the 

diagnostic accuracy of several different combinations of 

algorithms is compared. In terms of the average diagnostic 

accuracy, all the modules in the model play a crucial role. In 

addition, CWT processing has a significant impact on diagnostic 

accuracy. 

 
Fig. 14. Diagnostic accuracy comparison of different 

algorithms 

4. Conclusions 

This manuscript proposes a rolling bearing fault diagnosis 

algorithm by integrating the CWT module, multiscale feature 

fusion and an improved channel attention mechanism. First, the 

CWT module transforms the time domain signal into the 

frequency domain to obtain the wavelet power spectrum. Then, 

feature extraction is further performed by multiscale 

convolutional and pooling layers. Additionally, the improved 

channel attention module is used in the convolutional layer to 

autonomously learn the sensitivity of each channel to faults. 

Then, the weights are redistributed by adaptively enhancing or 

suppressing different channels for fault sensitivity, and finally, 

the softmax classifier is used for fault diagnosis. Unlike most 

existing diagnostic models, the proposed algorithm can 

adaptively adjust the weights to improve the diagnosis efficiency 

and generalization ability. The algorithm is validated using the 

CWRU bearing data and experimental bearing data. It is also 

compared with existing deep learning algorithms. The results 

show that the algorithm can perform highly accurate fault 

diagnoses under various working conditions. However, detailed 

analysis of experimental results and a couple of parameter 

sensitivity studies should be added to evaluate the effects of the 

key hyper-parameters of the proposed method on the 

performance, this job is what we will do next. 
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